Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.727
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597435

RESUMO

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Assuntos
Disfunção Cognitiva , Degeneração Hepatolenticular , Ratos , Animais , Ratos Sprague-Dawley , Degeneração Hepatolenticular/tratamento farmacológico , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 12/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Apoptose , Hipocampo/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Penicilamina/farmacologia , Disfunção Cognitiva/tratamento farmacológico , RNA Mensageiro
2.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583438

RESUMO

Kinetochore scaffold 1 (KNL1) is indispensable for generating motile micro-tubule attachments and isolating chromosomes. KNL1 is highly expressed in multiple middle-route tissues and promotes tumor development. However, how it functions in non-small cell lung cancer (NSCLC) is unclear. Real-time quantitative PCR (RT-qPCR) and Western blotting (WB) were used to determine KNL1 expression in NSCLC tissues and cells. The sh-KNL1 or oe-KNL1 was transfected into NSCLC cells. The colony formation assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were used to evaluate cell proliferation and apoptosis. A transwell assay was used to monitor invasion and migration. The CCK-8 assay was used to measure NSCLC cell sensitivity to chemotherapy drugs. WB confirmed the protein levels of apoptosis-related proteins, cell cycle-associated proteins, and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor kappaB (NF-κB) pathway. A PI3K/AKT/NF-κB pathway inhibitor was used to intervene in NSCLC cell transfection along with oe-KNL1, thus revealing the function of the pathway in carcinogenicity mediated by KNL1. In result KNL1 expression was substantially increased in NSCLC tissues and cells. High-level KNL1 expression is related to the poor prognosis of NSCLC patients. KNL1 silencing bolstered promoted NSCLC cell apoptosis and inhibited proliferation, cell cycle progression, invasion, and EMT, whereas KNL1 silencing had the opposite effect. KNL1 knockdown increased NSCLC cell sensitivity to chemical drugs. KNL1 promoted PI3K/AKT/NF-κB pathway activation, while PI3K/AKT/NF-κB pathway inhibition weakened the procancer effect mediated by KNL1 overexpression but had little influence on KNL1 levels. We conclude that KNL1 activates the PI3K/AKT/NF-κB pathway to increase NSCLC progression and attenuate NSCLC sensitivity to chemotherapy drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Cinetocoros/metabolismo , Cinetocoros/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Yi Chuan ; 46(4): 290-305, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632092

RESUMO

The tumor suppressor programmed cell death 4 (PDCD4) is downregulated in various tumor tissues indicating poor prognosis. PDCD4 is the first protein found to resist tumor transformation, invasion, and metastasis by inhibiting translation. The functions of PDCD4 dependent on its structures are affected by extracellular signals. It regulates tumor-related proteins through a variety of mechanisms, especially involved in two major signaling pathways, PI3K-Akt-mTOR and MAPK. By analyzing the relationship between the structures, functions and diseases of PDCD4, this review summarizes the roles of PDCD4 in several physiological processes and diseases such as apoptosis, autophagy, tumor, and inflammation in recent years, thereby providing insights for the study of the signaling pathways of PDCD4 and related proteins and the treatment of diseases targeting them.


Assuntos
Proteínas Reguladoras de Apoptose , Fosfatidilinositol 3-Quinases , Proteínas Reguladoras de Apoptose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a RNA , Apoptose
4.
Am J Physiol Heart Circ Physiol ; 326(5): H1124-H1130, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488519

RESUMO

The co-chaperone Bcl2-associated athanogene 3 (BAG3) is a central node in protein quality control in the heart. In humans and animal models, decreased BAG3 expression is associated with cardiac dysfunction and dilated cardiomyopathy. Although previous studies focused on BAG3 in cardiomyocytes, cardiac fibroblasts are also critical drivers of pathologic remodeling. Yet, the role of BAG3 in cardiac fibroblasts is almost completely unexplored. Here, we show that BAG3 is expressed in primary rat neonatal cardiac fibroblasts and preferentially localizes to mitochondria. Knockdown of BAG3 reduces mitophagy and enhances fibroblast activation, which is associated with fibrotic remodeling. Heat shock protein 70 (Hsp70) is a critical binding partner for BAG3 and inhibiting this interaction in fibroblasts using the drug JG-98 decreased autophagy, decreased mitofusin-2 expression, and disrupted mitochondrial morphology. Together, these data indicate that BAG3 is expressed in cardiac fibroblasts, where it facilitates mitophagy and promotes fibroblast quiescence. This suggests that depressed BAG3 levels in heart failure may exacerbate fibrotic pathology, thus contributing to myocardial dysfunction through sarcomere-independent pathways.NEW & NOTEWORTHY We report BAG3's localization to mitochondria and its role in mitophagy for the first time in primary ventricular cardiac fibroblasts. We have also collected the first evidence showing that loss of BAG3 increases cardiac fibroblast activation into myofibroblasts, which are major drivers of cardiac fibrosis and pathological remodeling during heart disease.


Assuntos
Cardiomiopatias , Mitofagia , Animais , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo
5.
Mol Biol Rep ; 51(1): 435, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520543

RESUMO

BACKGROUND: XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure. METHODS: In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins. RESULTS: It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance. CONCLUSION: In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Estresse do Retículo Endoplasmático/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo
6.
Bioorg Chem ; 146: 107292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555798

RESUMO

Breast cancer is a common public health disease causing mortality worldwide. Thus, providing novel chemotherapies that tackle breast cancer is of great interest. In this investigation, novel pyrido[2,3-d]pyrimidine derivatives 3,4,(6a-c),(8a,b),9-20 were synthesized and characterized using a variety of spectrum analyses. The geometric and thermal parameters of the novel thiouracil derivatives 3,4,6a,(8a,b),11,12,17,18, 19 were measured using density functional theory (DFT) via DFT/B3LYP/6-31 + G(d,p) basis set. All synthesized compounds were evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) method using MCF-7 and MDA-MB-231 breast cancerous cells, compound 17 had the maximum anticancer activity against both breast cancerous cells, recording the lowest half-maximal inhibitory concentration (IC50) values (56.712 µg/mL for MCF-7 cells and 48.743 µg/mL for MDA-MB-231 cells). The results were confirmed in terms of the intrinsic mechanism of apoptosis, where compound 17 had the highest percentage in the case of both cancer cells and recorded Bax (Bcl-2 associated X)/Bcl-2 (B-cell lymphoma 2) ratio 17.5 and 96.667 for MCF-7 and MDA-MB-231 cells, while compound 19 came after 17 in the ability for induction of apoptosis, where the Bax/Bcl-2 ratio was 15.789 and 44.273 for both cancerous cells, respectively. Also, compound 11 recorded a high Bax/Bcl-2 ratio for both cells. The safety of the synthesized compounds was applied on normal WI-38 cells, showing minimum cytotoxic effect with undetectable IC50. Compounds 17, 11, and 19 recorded a significant increase of p53 upregulated modulator of apoptosis (PUMA) expression levels in the cancerous cells. The DFT method was also used to establish a connection between the experimentally determined values of the present investigated compounds and their predicted quantum chemical parameters. It was concluded that Compounds 17, 11, and 19 had anti-breast cancer potential through the induction of apoptotic Bax/Bcl-2 and PUMA expression levels.


Assuntos
Antineoplásicos , Neoplasias da Mama , Compostos Heterocíclicos , Iohexol/análogos & derivados , Humanos , Feminino , Proteína X Associada a bcl-2 , Neoplasias da Mama/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Compostos Heterocíclicos/farmacologia , Proliferação de Células
7.
Sci Rep ; 14(1): 6084, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480783

RESUMO

Current therapies that target the B-cell receptor pathway or the inhibition of anti-apoptotic proteins do not prevent the progressive forms of chronic lymphocytic leukemia (CLL), have low long-term efficacy and are subject to therapeutic resistance. Deciphering the mechanisms of leukemic cell survival and searching for new specific targets therefore remain major challenges to improve the management of this disease. It was evidenced that NTSR2 (neurotensin receptor 2), through the recruitment of TRKB (tropomyosin related kinase B), induces survival pathways in leukemic B cells. We have investigated the therapeutic potential of this protein complex as a new target. The binding domain of NTSR2 and TRKB was identified and a peptide targeting the latter was designed. The peptide binds TRKB and efficiently decreases the interaction of the two proteins. It is also effectively internalized by CLL-B cells in which it notably affects Src family kinase signaling and anti-apoptotic proteins levels. It demonstrated a cytotoxic effect both in vitro on the MEC-1 cell line and ex vivo on a cohort of 30 CLL patients. Altogether, these results underline the therapeutic potential of the NTSR2/TRKB protein complex as a target in CLL and open new perspectives for the development of targeted therapies.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Peptídeos/metabolismo
8.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474453

RESUMO

Atractylenolide II (AT-II), the major bioactive compound of Atractylodes macrocephala, exhibits anti-cancer activity against many types of tumors, but the roles and the potential mechanisms in endometrial cancer remain unclear. In the present study, AT-II treatment was found to significantly suppress RL95-2 and AN3CA cell proliferation and glycolysis, and induced their apoptosis by inactivating the ERK signaling pathway, accompanied by the changing expression of the glycolytic key enzymes and apoptotic-related proteins. Peptidyl arginine deiminase 3 (PADI3), as the candidate target gene of AT-II, was highly expressed in the endometrial cancer tissues and associated with a poor prognosis according to bioinformatics analysis. PADI3 knockdown inhibited proliferation and glycolysis in endometrial cancer cells and induced cell apoptosis. Furthermore, AT-II negatively regulated the expression of PADI3, and PADI3 overexpression reversed the effects of AT-II on endometrial cancer cells. Our findings suggested that the anti-cancer function of AT-II is associated with the suppression of glycolysis and induction of apoptosis by blocking the PADI3-ERK signaling pathway. Thus, AT-II represents a novel therapeutic target for endometrial cancer and targeting AT-II may serve as a potential strategy for the clinical therapy of endometrial cancer.


Assuntos
Neoplasias do Endométrio , Lactonas , Sesquiterpenos , Transdução de Sinais , Feminino , Humanos , Neoplasias do Endométrio/tratamento farmacológico , Apoptose , Proliferação de Células , Proteínas Reguladoras de Apoptose/metabolismo , Glicólise , Linhagem Celular Tumoral , Proteína-Arginina Desiminase do Tipo 3/metabolismo
9.
Sci Rep ; 14(1): 6638, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503934

RESUMO

Worldwide, myocardial infarction (MI) is the leading cause of death and disability-adjusted life years lost. Recent researches explored new methods of detecting biomarkers that can predict the risk of developing myocardial infarction, which includes identifying genetic markers associated with increased risk. We induced myocardial infarction in mice by occluding the left anterior descending coronary artery and performed TTC staining to assess cell death. Next, we performed ChIP assays to measure the enrichment of histone modifications at the promoter regions of key genes involved in mitochondrial fission. We used qPCR and western blot to measure expression levels of relative apoptotic indicators. We report that miR-181a inhibits myocardial ischemia-induced apoptosis and preserves left ventricular function after MI. We show that programmed cell death protein 4 (PDCD4) is the target gene involved in miR-181a-mediated anti-ischemic injury, which enhanced BID recruitment to the mitochondria. In addition, we discovered that p53 inhibits the expression of miR-181a via transcriptional regulation. Here, we discovered for the first time a mitochondrial fission and apoptosis pathway which is controlled by miR-181a and involves PDCD4 and BID. This pathway may be controlled by p53 transcriptionally, and we presume that miR-181a may lead to the discovery of new therapeutic and preventive targets for ischemic heart diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Camundongos , Animais , Dinâmica Mitocondrial/genética , Proteína Supressora de Tumor p53/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Miócitos Cardíacos/metabolismo
10.
Chem Biol Drug Des ; 103(3): e14492, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38485457

RESUMO

Recent evidence has proved that thymoquinone as a natural polyphenol has great anticancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the effects of thymoquinone on increasing cisplatin-induced apoptosis human oral squamous cell carcinoma cells and its underlying molecular mechanisms. SCC-25 cancer cells treated by thymoquinone and cisplatin with different concentrations. Cell viability will determine by using MTT assay. The concentrations of reactive oxygen species (ROS) and antioxidant activities were determined using specific related kits. DNA damage, lipid, and protein oxidation were assessed. Real-time PCR and Western blot analysis will be used to determine the expression of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Combination of thymoquinone and cisplatin suppressed synergistically SCC-25 cancer cell viability and induced apoptosis in dose-depended manner. Cell treatment with combination of thymoquinone and cisplatin led to accumulation of ROS within cells and increase in the intracellular levels of DNA damage, protein and lipid peroxidation. In addition, the combination of thymoquinone and cisplatin modulated the mRNA and protein expression levels of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Thymoquinone potentiated cisplatin anti-cancer effect on OSCC by inducing oxidative stress in cells.


Assuntos
Benzoquinonas , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Caspase 3/genética , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Neoplasias Bucais/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Estresse Oxidativo , Linhagem Celular Tumoral
11.
Methods Mol Biol ; 2761: 301-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427246

RESUMO

The involvement of apoptosis in neurodegeneration can be detected by quantifying the apoptotic proteins in hippocampal lysate. Apoptosis can occur due to the overproduction of apoptotic proteins under the influence of external trigger or due to the overexpression of the apoptotic genes. Thus, the imbalance in the production of apoptotic proteins can be quantified using the Western blotting technique and the overexpression of apoptotic genes in hippocampal DNA can be quantified using the real-time quantification of mRNA expression of the apoptotic proteins. Here we provide the methodology of detecting the apoptosis-related proteins like Bax and Bcl-2 and their mRNA expression in hippocampal neurodegeneration. In this chapter, we have described the methodology for quantification of mRNA expression of these apoptosis-related proteins in the hippocampal lysate using the real-time quantitative polymerase chain reaction (qPCR) technique and the methodology of detection and characterization of respective protein expression in the hippocampal lysate using the Western blotting technique.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Hipocampo/metabolismo , RNA Mensageiro/metabolismo
12.
J Mol Model ; 30(4): 108, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499818

RESUMO

CONTEXT: BIM (Bcl-2 interacting mediator of apoptosis)-derived peptides that specifically target over-expressed Mcl-1 (myeloid cell leukemia-1) protein and induce apoptosis are potentially anti-cancer agents. Since the helicity of BIM-derived peptides has a crucial role in their functionality, a range of strategies have been used to increase the helicity including the introduction of unnatural residues and stapling methods that have some drawbacks such as the accumulation in the liver. To avoid these drawbacks, this study aimed to design a more helical peptide by utilizing bioinformatics algorithms and molecular dynamics simulations without exploiting unnatural residues and stapling methods. MM-PBSA results showed that the mutations of A4fE and A2eE in analogue 5 demonstrate a preference towards binding with Mcl-1. As evidenced by Circular dichroism results, the helicity increases from 18 to 34%, these findings could enhance the potential of analogue 5 as an anti-cancer agent targeting Mcl-1. The applied strategies in this research could shed light on the in silico peptide design. Moreover, analogue 5 as a drug candidate can be evaluated in vitro and in vivo studies. METHODS: The sequence of the lead peptide was determined using the ApInAPDB database and PRALINE program. Contact finder and PDBsum web server softwares were used to determine the contact involved amino acids in complex with Mcl-1. All identified salt bridge contributing residues were unaltered to preserve the binding affinity. After proposing novel analogues, their secondary structures were predicted by Cham finder web server software and GOR, Neural Network, and Chou-Fasman algorithms. Finally, molecular dynamics simulations run for 100 ns were done using the GROMACS, version 5.0.7, with the CHARMM36 force field. MM-PBSA was used to assess binding affinity specificity in targeting Mcl-1 and Bcl-xL (B-cell lymphoma extra-large).


Assuntos
Antineoplásicos , Proteínas Reguladoras de Apoptose , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Peptídeos/farmacologia , Apoptose , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteína bcl-X
13.
PLoS Genet ; 20(3): e1011193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489392

RESUMO

Cell Competition is a process by which neighboring cells compare their fitness. As a result, viable but suboptimal cells are selectively eliminated in the presence of fitter cells. In the early mammalian embryo, epiblast pluripotent cells undergo extensive Cell Competition, which prevents suboptimal cells from contributing to the newly forming organism. While competitive ability is regulated by MYC in the epiblast, the mechanisms that contribute to competitive fitness in this context are largely unknown. Here, we report that P53 and its pro-apoptotic targets PUMA and NOXA regulate apoptosis susceptibility and competitive fitness in pluripotent cells. PUMA is widely expressed specifically in pluripotent cells in vitro and in vivo. We found that P53 regulates MYC levels in pluripotent cells, which connects these two Cell Competition pathways, however, MYC and PUMA/NOXA levels are independently regulated by P53. We propose a model that integrates a bifurcated P53 pathway regulating both MYC and PUMA/NOXA levels and determines competitive fitness.


Assuntos
Competição entre as Células , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Supressora de Tumor p53 , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Competição entre as Células/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Camundongos
14.
Cancer Lett ; 588: 216781, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38494150

RESUMO

Metastatic lung adenocarcinoma (LuAC) presents a significant clinical challenge due to the short latency and the lack of efficient treatment options. Therefore, identification of molecular vulnerabilities in metastatic LuAC holds great importance in the development of therapeutic drugs against this disease. In this study, we performed a genome-wide siRNA screening using poorly and highly brain-metastatic LuAC cell lines. Using this approach, we discovered that compared to poorly metastatic LuAC (LuAC-Par) cells, brain-metastatic LuAC (LuAC-BrM) cells exhibited a significantly higher vulnerability to c-FLIP (an inhibitor of caspase-8)-depletion-induced apoptosis. Furthermore, in vivo studies demonstrated that c-FLIP knockdown specifically inhibited growth of LuAC-BrM, but not the LuAC-Par, tumors, suggesting the addiction of LuAC-BrM to the function of c-FLIP for their survival. Our in vitro and in vivo analyses also demonstrated that LuAC-BrM is more sensitive to c-FLIP-depletion due to ER stress-induced activation of the c-JUN and subsequent induction of stress genes including ATF4 and DDIT3. Finally, we found that c-JUN not only sensitized LuAC-BrM to c-FLIP-depletion-induced cell death but also promoted brain metastasis in vivo, providing strong evidence for c-JUN's function as a double-edged sword in LuAC-BrM. Collectively, our findings not only reveal a novel link between c-JUN, brain metastasis, and c-FLIP addiction in LuAC-BrM but also present an opportunity for potential therapeutic intervention.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Pulmonares/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD
15.
Free Radic Biol Med ; 216: 89-105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494143

RESUMO

Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.


Assuntos
Isquemia Encefálica , Ferroptose , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , NADP/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Infarto Cerebral/metabolismo , Glicólise , Traumatismo por Reperfusão/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo
16.
Sci Rep ; 14(1): 3100, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326490

RESUMO

In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Células HT29 , Linhagem Celular Tumoral , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Proliferação de Células
17.
Environ Toxicol ; 39(5): 2961-2969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308464

RESUMO

Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.


Assuntos
Chalconas , Neoplasias do Endométrio , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Transdução de Sinais , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Regulação para Cima , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/metabolismo
18.
Front Immunol ; 15: 1302751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384466

RESUMO

Background: The infiltration and activation of immune cells in the tumor microenvironment (TIME) affect the prognosis of patients with cancer. Tertiary lymphoid structure (TLS) formation favors tumour- infiltrating-lymphocyte (TIL) recruitment and is regarded as an important indicator of good prognosis associated with immunotherapy in patients with tumors. Chemotherapy is currently one of the most commonly used clinical treatment methods. However, there have been no clear report to explore the effects of different types of chemotherapy on TLS formation in the TIME. This study examined the effects of immunogenic cell death (ICD)-inducing chemotherapeutics on immune cells, high-endothelial venules (HEV), and TLSs in mouse melanomas. Methods: Doxorubicin (an ICD inducer), gemcitabine (non-ICD inducer), and a combination of the two drugs was delivered intra-peritoneally to B16F1-loaded C57BL/6 mice. The infiltration of immune cells into tumor tissues was evaluated using flow cytometry. HEV and TLS formation was assessed using immunohistochemistry and multiple fluorescent immunohistochemical staining. Results: Doxorubicin alone, gemcitabine alone, and the two-drug combination all slowed tumor growth, with the combined treatment demonstrating a more pronounced effect. Compared with the control group, the doxorubicin group showed a higher infiltration of CD8+ T cells and tissue-resident memory T cells (TRM) and an increase in the secretion of interferon-γ, granzyme B, and perforin in CD8+ T subsets and activation of B cells and dendritic cells. Doxorubicin alone and in combination with gemcitabine decreased regulatory T cells in the TIME. Moreover, doxorubicin treatment promoted the formation of HEV and TLS. Doxorubicin treatment also upregulated the expression of programmed cell death protein (PD)-1 in CD8+ T cells and programmed cell death protein ligand (PD-L)1 in tumor cells. Conclusions: These results indicate that doxorubicin with an ICD reaction promotes TLS formation and increases PD-1/PD-L1 expression in tumor tissues. The results demonstrate the development of a therapeutic avenue using combined immune checkpoint therapy.


Assuntos
Melanoma , Estruturas Linfoides Terciárias , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Gencitabina , Estruturas Linfoides Terciárias/patologia , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo , Desoxicitidina , Proteínas Reguladoras de Apoptose/metabolismo , Microambiente Tumoral
19.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387723

RESUMO

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Assuntos
Dissecção Aórtica , Canabidiol , Animais , Humanos , Camundongos , Aminopropionitrilo/farmacologia , Dissecção Aórtica/tratamento farmacológico , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patologia
20.
Cancer Res Commun ; 4(3): 634-644, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38329389

RESUMO

Cancer cells exploit the expression of anti-apoptotic protein Bcl-2 to evade apoptosis and develop resistance to therapeutics. High levels of Bcl-2 leads to sequestration of pro-apoptotic proteins causing the apoptotic machinery to halt. In this study, we report discovery of a small molecule, BFC1108 (5-chloro-N-(2-ethoxyphenyl)-2-[(4-methoxybenzyol)amino]benzamide), which targets Bcl-2 and converts it into a pro-apoptotic protein. The apoptotic effect of BFC1108 is not inhibited, but rather potentiated, by Bcl-2 overexpression. BFC1108 induces a conformational change in Bcl-2, resulting in the exposure of its BH3 domain both in vitro and in vivo. BFC1108 suppresses the growth of triple-negative breast cancer xenografts with high Bcl-2 expression and inhibits breast cancer lung metastasis. This study demonstrates a novel approach to targeting Bcl-2 using BFC1108, a small molecule Bcl-2 functional converter that effectively induces apoptosis in Bcl-2-expressing cancers. SIGNIFICANCE: We report the identification of a small molecule that exposes the Bcl-2 killer conformation and induces death in Bcl-2-expressing cancer cells. Selective targeting of Bcl-2 and elimination of cancer cells expressing Bcl-2 opens up new therapeutic avenues.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...